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The ideas in this paper are based on an analysis of statistical 

explanation that uses the information transmitted by a theory [2]. 

Consider a theory that specifies a probability distribution on 

events of some domain, where for purposes of analysis we divide the 

variables that describe the domain into two sets: [M], a set of variables 

whose values are to be explained, and [S], a set of variables whose values 

are used to explain the values of the variables in [M]. The information 

transmitted by the theory is 

I(S,M) » H(S) ♦ H(M) - H(SxM), (1) 

where    H(S) and   H(M)    are the    uncertainties of the events in    [S]    and 

[M], respectively, and   H(SxM) is the uncertainty of the joint events. 

To illustrate this idea, consider the problem of explaining medical 

symptoms such as fever, coughing, skin rash and abdominal pain.    The kinds 

of variables available for explaining symptoms are facts in a patient's 

medical history and information about the patient's recent contact with 

other people with similar symptoms.    For the moment, I will avoid reference 

to disease entities, and deal only with the data that are available to the 

physician.    I have to strain your imagination a bit to do this, but a theory 

about skin rash and fever might run something like this:  Let   M.    denote 

a combination of fever and a blotchy skin rash, and let   M.    denote the 

absence of this pattern of symptoms.    Let   [S]    be a set of three variables: 

(1) the patient's age,  (2) whether he has been in contact with another 

person showing the symptoms within the last month, and (3) whether he had 

the symptoms himself at any previous time.    If each of these variables had 

three values, then [S] would partition ti.o domain of people into   33 » 27 



sets:  for example, one set could include all infants under the age of 

two months who had been in contact with someone with the symptoms recently 

and had not shown the symptoms themselves.    The theory then would consist 

of a set of probabilities of the 27 events distinguished in the explanans, 

and 27 conditional probabilities--a value of   P(M.|S.)    for each   S.e[S], 

These probabilities are sufficient to specify the probabilities of all 

the joint events, and therefore the overall probability of   M.    is speci- 

fied also.    Facts like "infants less than two months old seldom have the 

symptoms" and "contact with a person who has the symptoms increases the 

probability of having them, unless the person has had the symptoms pre- 

viously himself" would be incorporat d in the conditional probabilities, 

and facts like the proportion of people who have had the symptoms and 

the proportion of people who are younger than two months of age would be 

incorporated in the probabilities of the explanans. 

Let 

ai " ^V« ^ ' PCMk)' Pik " p(Mklsi)- w 

In relation to the example about symptoms, the   a.    are the proportions 

of people in the various categories specified by age, medical history, and 

recent contacts.    The    c.     are the proportions of people who have or do 

not have the symptoms now.    The   p..     are the conditional probabilities 

of having the symptoms, given the various categories of age, medical 

history, and recent contacts.    The quantities in equation (1)  are defined 

as 

H(S)  =    E - a.   log    a.,    H(M) « ? - c.   log c, . 
Ill fc K K 

(3) 

H(S * M) =    ZZ- ajp^ log a^. 



If we think about a theory in relation to its information trans- 

mitted, we are immediately led to considering the overall properties 

of the theory. Information transmitted is a measure of the reduction 

in uncertainty brought about by the dependencies between the variables. 

Thus, it is an index of the explanatory power of the theory in relation 

to the entire domain of events that the theory deals with. In fact, 

the point of introducing the analysis based on information transmitted 

was to provide some concepts that would make it reasonable to consider 

the evaluation of theories, rather than of single explanations. In 

my opinion, it is more appropriate and useful to consider general pro- 

perties of theories than it is to deal with the status of single explana- 

tions. And the information transmitted seems to capture some of the 

properties that are desireable for a measure that is used to evaluate 

a theory. For example, a higher value of information transmitted 

generally goes with a greater degree of testability in Popper's sense, 

anda greater degree of predictive usefulness. 

In this paper, I want to extend this line of analysis to the con- 

sideration of theories that provide statistical explanations and that 

postulate theoretical entities. (The earlier analysis was limited to 

relationships between empirical variables.) To carry out this analysis, 

I need to introduce a structure that is slightly more complex than the 

one described above. 

Consider a domain ft, partitioned by three sets of variables: [S], 

a set of empirical variables used as explanans; [M], a set of empirical 

variables whose values are to be explained; and [T], a set of postulated 

theoretical variables. The values of the theoretical variables are 

assumed to be produced by the values of the explanans, and in turn to 



produce the values of the explananda, according to statistical laws 

specified by the theory.   The sense in which I use the phrase "theoreti- 

cal variables   produce the values of the explananda" is entirely neutral 

as regards metaphysics.    I simply mean that the conditional probabilities 

of the empirical outcomes--the explananda--given any theoretical state 

are the same, regardless of the value of the explanans that applies.    In 

other words, I assume that the probability law   connecting any given 

theoretical state with the explananda is independent of the conditions 

that produced that theoretical state.    Under this assumption, the theory 

consists of three sets of probabilities:  (1) a vector of probabilities 

a., where 

aj - PCSj), (4) 

(2)  a set of conditional probabilities   q..,  linking the explanans to 

the theoretical states, where 

^ij " pCTjlSi)' & 

and (3)  a set of conditional probabilities    r.. ,  linking the theoretical 

states to the explananda, where 

r.^PCMjJT.). (6) 

First, it may be remarked that these quantities relate to those des- 

cribed at the beginning in a straightforward way. When theoretical variables 

are not taken into account, a theory is specified by a vector of probabili- 

ties of the explanans, the a., and a matrix of conditional probabilities 

linking the explanans and the explananda, the p.. . This matrix is just 

the product of the matrices of conditional probabilities q.. and r.^. In 



other words, the probabilities linking the explanans and the explananda 

are specified by the probabilities defined in equations f5) and (6). 

pik - J^v (7) 

Of course, a theory is testable because data can be used to check its 

assumptions. In a theory of the kind described here, the data are the 

empirical values of the a. and the p.. , and these can be used to test 

the theory. If the theory specifies numerical probabilities (rather than 

merely the existence of specified states) then the process of testing 

the theory is just that of comparing the theoretical values of the a. 

and the values of p..  calculated from equation (7) with empirical values 

of a. and p.. that can be obtained by whatever means are available. 

When the theory just specifies that certain states exist, testability 

involves the estimation of parameters, and I will leave that discussion 

for a later time in this paper. 

The main question that I want to deal with is the relationship be- 

tween theoretical variables and the information-theoretical properties 

of a theory. The situation involves three matrices: one linking the 

empirical explanans and the theoretical variables, a second involving 

the theoretical variables and the empirical explananda, and a third, the 

product of the first two, linking the empirical explanans and the empirical 

explaranda. We can calculate the information transmitts-: by each of these. 

Xs  an hypothetical example, consider a theory that specifies four possible 

values of S and three possible values of M. This might, for example, 

involve classification of medical infomation into four categories of 

medical history and three categories of symptom patterns. In addition, 

the theory postulates the existence of a theoretical state, such as a 



disease entity that «ay be present or absent, giving two values of T. 

To have a concrete illustration, suppose the values of the a., q.., 

and r.^ are 

[ai] - [.20, .30, .10, .40], 

^ijl 

Tl T2 

.70 .30 

.60 .40 

.30 .70 

.20 .80 

'VT 
.70 

.20 

.20  .10 

.20  .60 
(8) 

The values of infonation transaitted by these Matrices, using natural 

logarithms, are 

I(S,T) • 0.10,    I(T,M) - 0.16. 

The implications of this theory for dependencies between explanans 

and explananda are described by the values of p.. , which are 

t'iki 

Ml M2 M3 

.55 .20 .25 

.50 .20 .30 

.35 .20 .45 

.30 .20 .50 

(9) 

Using the values of a. given earlier, the information transmitted is 

I (S.M) = 0.03. 

An interesting general fact is illustrated by the example.    The value 



of   I(S,M)    is never larger than either   I(S,T)    or   I(T,M).   This claim 

can be proved as follows.   Consider a state-space   [Q] ■ fSj * [T].    The 

conditional probabilities   P(Mk|(k)   will eqtnl the conditional pro- 

babilities   r.., hence, the inforution traninittcd   I(Q.M)   will he 

the sane as    I(T,N).    (This is established by an argument given in [2] 

in connection with equation (17) of that paper.)   The state-space [S] 

is a partition of [Q], and it can be shown that the information trans- 

mitted by collapsing two or more of the states of a matrix cannot be 

larger than the information transmitted by the original matrix. 

Nhat this fact means is that the dependencies between the theoretical 

variables and the empirical variables are stronger in the sense of approach- 

ing probabilities of one and zero than are the dependencies between the 

two sets of empirical variables.    I am inclined to believe that this fact 

is related to the intuitions that we have regarding the desireability of 

theoretical explanations when the dependencies between empirical variables 

are statistical.    If the theory correctly specifies a set of states that 

produce the phenomena to be explained in the sense assumed here, then 

the explanation in tens of the theoretical states is better, in the sense 

of information transmitted, than is the explanation in terns of the empiri- 

cal explanans. 

On the other hand, the improved quality of tK* explanation obtained 

by introducing theoretical states may be merely a "paper" profit.   Without 

further theoretical development, merely introducing theoretical variables 

may not change the empirical content of the theory.   However, further 

developments are often guided by the postulated properties of theoretical 

entities. 

One kind of development involves the discovery of new empirical variables 



that can be added to the explanans. Refer back to equation (8), and 

imagine that at some stage of scientific investigation the probabilities 

specified there represent the best available theory about the explananda 

[M]. This is equivalent to saying that the best judgment that can be 

made on the available evidence is that there are states T. and T. 

that cannot be distinguished directly in observations (at least with pre- 

sent technology) that are related to the explananda according to pro- 

babilities given by the values of the r.. . One research problem that 

would be potentially worthwhile in such a situation would be the search 

for improved knowledge about the conditions that produce the theoretical 

states. If additional variables that are related to the theoretical states 

could be discovered, then the likely outcome would be an increase in 

1(8,7), and a corresponding increase in I(S,M). The limit of this 

process of obtaining better knowledge about conditions producing the 

theoretical states is a theory with information transmitted equal to I(T,M) 

A second kind of research that could be motivated by a state of 

knowledge such as that described by equation (8) involves an effort 

to develop new theoretical variables in order to increase I(T,M). If 

the conditional probabilities of the explananda, given the theoretical 

states are substantially different from one and zero, there is a strong 

presumption that the theoretical description is incomplete and that 

additional distinctions among theoretical states can be found to reduce 

the conditional uncertainty of the explananda given the theoretical 

states. 
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A third kind of development  from a situation like that of equation 

(8)  could be the discovery of new phenomena that can be explained by the 

empirical explanans and the theoretical variables of the theory.    The 

extension of a theory to additional explananda usually has the effect of 

increasing the information transmitted—in this case, involving the rela- 

tionship between theoretical states and the explananda. 

Next,  I will discuss theories of the form of equation (8), but with 

free parameters rather than numerical values of the conditional probabili- 

ties   q..    and   r.. .    Theoretical proposals that specify numerical probabili- 
lj jK 

ties are very rare.    However, a kind of situation that occurs frequently 

is one in which dependencies among empirical variables are known, and a 

theorist proposes to explain the dependencies in relation to a set of 

theoretical states.    In its weakest form,  this kind of theoretical pro- 

posal simply specifies a number of theoretical states and all the condi- 

tional probabilities are free parameters.    Let   n   be the number of values 

taken by the explanans and let   m   be the number of values taken by the 

explananda.    Then if   t   is the number of postulated states in the theory, 

the form of the hypothesis is 

3{qi.:i»l,...,n; j»l,...,t}    3{r.k:j«l,...,t;k«l,...,m} 

t (10) 

That is, the theory asserts that it is possible to find a set of pro- 

babilities    (the   q..    and   r..)    such that all the values of   p..     can 

be calculated using equation (7). 

An hypothesis of this kind can be tested if the number of free para- 

meters is smaller than the number of quantities that can be obtained from 
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the empirical dependencies. In the weak form of the theory described 

above, the nunber of free parameters is (t-l)n*(m-l)t. The number of 

empirical quantities is (m-l)n. Then the theory is testable if the 

following inequality is satisfied: 

It should be noted that equation (11) applies only when a theory is 

stated without constraints on the theoretical parameters. Most frequently, 

substantive hypotheses about the postulated states impose constraints 

that reduce the number of free parameters of the theory. The most general 

form of the kind of theoretical proposal we are discussing specifies 

a set of free parameters (e.,...,e ) such that each of the conditional 

probabilities of the theory is a specified function of the parameters. 

Then the condition for testability is that s must be less than the 

nunber of empirical quantities, and the hypothesis has the font 

t 
Öe1)...Qos)(Vi)(Vk)[pik = E q..^.. .e^r^CSj.. .»^J.     (12) 

The procedure for testing the hypothesis involves finding estimates of 

the theoretical parameters that bring the values of p.. implied by the 

theory as close as possible to the empirical values. Then the degree 

of approximation between the theoretical and empirical values of p.. 

can be evaluated using standard statistical techniques. 

There is enough structure in these general concepts now so that a 

realistic example can be introduced. I will describe a theory about the 

detection of weak signals proposed by Luce [4]. The theory is used in 

analysis of experiments where on some trials a relatively weak stimulus 

signal wiih some fixed energy level is presented along with a noisy input 
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that makes it difficult to tell whether the signal is there or not. 

The noise has a fixed mean energy level, and on trials when the signal 

is not presented the noise is presented alone. There are several 

conditions designed to produce different response biases. These may 

be produced by varying the payoffs for different kinds of correct 

responses (identifying signals when they are present or correctly 

saying that the signal is absent) or by imposing varying penalties for 

different kinds of errors (missing signals or saying there is a signal 

when only noise is presented). Another way of producing response bias is 

to vary the overall proportion of trials when a signal is presented, thus 

producing higher or lower expectations of the signal. The empirical 

explananda are the subjects' responses: on each trial a subject says 

either "yes" or "no," depending on whether he judges a signal to have 

been present or absent. The explanans are the experimental conditions: 

on each trial, there is some condition of payoff and a priori expectation 

of a signal, and either the signal is presented or only noise is presented. 

At the level of data, an experiment can be described as a set of condi- 

tional frequencies 

I»ik ■ P(yes| condition i) 

where the conditions are given in the following equation: 

tPiki 

1 
SN, 

S2 

S 
g 

SN 
g 

yes no 

Pll Pl2 

P21 P22 

P31 P32 

P41 
• 
• 

P42 
• 
• 

• 

P(2g-l)l 

• 

P(2g-1)2 

P(2g)l P(2g)2 

(13) 
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where   g    is the number of different motivational conditions. 

Luce's theory uses the assumption of a threshold of detection and 

the probability of exceeding the threshold depends only on whether the 

signal was presented or not.    The other theoretical variable is deter- 

mined by the motivational conditions.    Thus, on each trial,  the subject 

is assumed to be in one of   2g   theoretical states, as specified in 

equation (14). 

1 
SN 

S2 
SN, 

1 

Dl Dl D2 D2         ' • ■ D
a 

D, r 

l-q q 0 0 0 0 

1-p p 0 0 0 0 

0 0 l-q q .      0 0 

0 0 1-p p 0 0 

[q- ■] a 

s 
g 

SN 
g 

0 

0 

0 

0 

0 

0 

0 

0 

l-q 

1-p 

q 

p 

(14) 

\ 
denotes a state in which the threshold of detection is not exceeded 

in motivational condition h, and D.  denotes a state in which the 

threshold is exceeded in motivational condition h. The probability of 

exceeding the threshold when the signal is presented is p, and the pro- 

bability of exceeding the threshold when noise is presented alone is q. 

It is assumed that the motivational states affect the relationships 

between the theoretical states and the responses. The states are assumed 

to be ordered in their tendency to produce biases favoring "yes" responses; 

let State 1 denote the condition producing the greatest reluctance to say 

"yes." It is assumed that there is some motivational state f such that 
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^(yeslDJ^) 

P"(yes 

for h < f 

for h > f 

for h < f 

for h > f 

(15) 

with u.  and L  ordered monotonically with the values of h. In other 

words, for states in which the subject is reluctant to say "yes," he 

always says "no" if the threshold is not exceeded and divides his res- 

ponses between "yes" and "no" randomly when the threshold is exceeded. 

And for states in which the subject is reluctant to say "no" he always 

says "yes" if the threshold is exceeded and divides his responses between 

"yes" and "no" when the threshold is not exceeded. The matrix of condi- 

tional probabilities connecting the theoretical states and the responses 

is given below. 

yes no 

u 1 

1 

1-u, 

"jkl 

0 1 

uf l.uf 

'♦1 ^fl 
1 0 

(16) 

g 
1 

1-t 

Recall that the theoretical values of the pik that can be compared 

with data are obtained by multiplying the matrices (qj.J and [r.J. In 
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the case of Luce's theory,  this yields 

1 
SN 1 

fPilJ 
f 

SNf 

Sf+1 
SN f+1 

yes no 

quj l-quj 

• 

1-pUj 

• 

• 

• 

quf 

• 

• 

l-quf 

puf l-puf 

(l-q)tf+1+q (l-q)(l-tf+1) 

(l-p)tf+1+p 

• 

(l-p)(l-tf+1) 

• 

• 

• 

(l-q)yq 
• 

(l-q)(l-tg) 

(l-p)tg+p (l-p)(l-tg) 

(17) 

S 
g 

SN 
S 

Luce's theory illustrates the kind of situation described in 

connection with equation (12).    A number of parameters are specified-- 

there are   g+2    of them--and the theory asserts that the parameters 

determine the relationships between explanans  (in this case, experi- 

mental conditions) and theoretical states and explananda (in this case, 

judgments about whether a signal was present).    The parameters therefore 

specify a theoretical relationship between the explanans and the explananda. 

In order to obtain a numerical relationship, the parameters must be esti- 

mated from data, and the theory is testable if the number of free para- 

meters is less than the number of empirical quantities in the data.    In 

the present example,  the number of empirical quantities is 2g, so the 

theory is testable whenever    g    is greater than    two. 

Numerical values of the parameters must be estimated both to test 
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the theory and to specify the infomation-theoretical properties of the 

theory.    Putting this in another way, the information transmitted by 

the theory is a function of the parameter values.    To provide a further 

illustration of the application of information theory to the analysis of 

statistical explanations, I have calculated the information transmitted 

by one special case of the theory.    Suppose that    g = 5    (that is,  five 

different motivational conditions are used) and the five conditions are 

used equally often.    Furthermore, suppose that signals are presented on 

one-half of the trials under each motivational condition.   This means 

that each of the states constituting the explanans has probability    .10, 

and from this we can calculate 

H(S) » 2.30. 

Now, suppose that an experiment is conducted and the estimated values 

of   p   and   q   are .60 and .30, respectively.    Recall that these are the 

probabilities of exceeding the threshold on signal trials and noise 

trials, respectively.    This permits us to calculate the probabilities 

of the theoretical states;  the probability of each   D.     is  .11 and the 

probability of each   D.     is  .09.    We can then calculate 

H(T)  ' 2.30,    H(S*T) » 2.94. 

The remaining parameters are the conditional probabilities of saying 

"yes" in the various theoretical states.    Suppose it is estimated that 

f ■ 3, and the values of the   u.     and   t.     parameters are 

Uj ■  .40, u2 «  .70, u3 » 1.00,  t4 ■  .50, t5 ■  .80. 

It turns out that this implies that subjects will say "yes" with probability 
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.51, and we can calculate 

H(M) = .69, H(1VM) = 2.55. 

Combining these values using equations (1) and (7), we arrive at 

values of infoimation transmitted as follows: 

1(5,1) a 1.66, I(T,M) ■ 0.44,  I(S,M) » 0.17. 

Note again that the information transmitted by the relationships between 

explanans and explananda is smaller than either of the quantities involving 

the theoretical states. 

Developments motivated by Luce's theory can be used to illustrate 

the remarks made earlier about the kinds of research that provide im- 

provements in theories of this kind.    One kind of development involves 

applying the theory to more complex experiments.    Luce's theory has been 

applied to studies in which two different signals have been presented 

on different trials.    The experiments involved auditory detection, and 

the signals were tones of different frequency.    This change increases 

the number of states in the set of explanans,  and thus increases the 

information transmitted by the theory.    In addition, the subjects were 

asked to identify the signal after they judged whether a signal was pre- 

sented.    Thus, instead of just saying "yes" or "no," subjects also clas- 

sified the stimuli as "high" or "low" as well.    With a more detailed 

set of explananda, additional explanatory power was obtained.    Of course, 

this experiment was not just cooked up to provide more detail for its 

own sake;  the threshold theory makes the strong prediction that when the 

threshold is not exceeded (as is the case for all "no" responses when 

h > f)  the subject should have no infoimation about which stimulus was 
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presented, and the experiment was designed in part to test this prediction. 

The  other kind of development involves adding to the complexity of the 

theoretical description, guided by data that are not consistent with the 

simpler theory. Krantz [3] has proposed such a theory, in which an addi- 

tional state D*. is postulated for each motivational state. D* is a 

state of strong detection, in which the subject is sure that a signal was 

presented. In Krantz1 theory, then, there are two postulated thresholds. If 

the lower threshold is not exceeded the subject is in State D. , and if the 

higher threshold is exceeded the subject is in State D*. . It is assumed 

that the subject always judges that a signal was presented when he is in 

State D*., regardless of the motivational state. The main reason for compli- 

cating a theory, of course, is to correct apparent defects that are revealed 

by failure of data to agree with predictions derived from the theory. But 

this also has the effect of increasing the explanatory power of the theory 

in the sense of information transmitted reflected by values of I(S,T) and 

I(T,M). 

This example from the theory of perception illustrates several aspects 

of the role of theoretical entities in statistical explanation. Other 

examples could be used for the same purpose, from other areas of psychological 

theory as well as from other fields. It also may be remarked that the 

analysis of discrete states does not affect the main features of the analysis. 

Systems that involve continuous variables can be analyzed from this point 

of view and their general properties are analogous to those of discrete-state 

systems, although the analysis of systems with discrete states is easier to 

understand. 

An important feature of the kind of theory that I have been discussing 
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is that it describes a system whose statistical properties do not change 

over time.    In such a stationary system,  the main role of theoretical 

entities seems to be heuristic, in that they guide the development 

of new empirical and theoretical research and thus facilitate the exten- 

sion of knowledge.    In the remainder of this paper I will disucss systems 

that are not stationary, and in these systems the use of theoretical 

entities can lead to a considerable simplification of the statistical 

structure of a theory in addition to their heuristic value. 

The simplest kind of nonstationary system is illustrated by experi- 

ments in learning and problem solving.    In their simplest form,  these 

experiments consist of repeated trials where a subject is given oppor- 

tunities to study the material to be learned or is given information 

relevant to solving the problem.    I will impose a relatively stringent 

condition of uniformity for the purpose of analysis here.    I will ignore 

differences in procedure that occur on different trials.    When such dif- 

ferences cannot be neglected, the situation would be analyzed as the con- 

catenation of different experiments. 

At the beginning of an experiment, the subject either gives only 

incorrect responses or he responds correctly with some probability due 

to guessing, depending on the procedure of the experiment.    As the subject 

proceeds through the experiment, the probability of correct response 

increases.    The subject may reach a state in which he gives only correct 

responses, or he may reach some asymptotic state in which the probability 

of correct response is at some level less than one.    Thus, the most 

salient general feature of the experiment is an increase in the probability 

of correct response from some initial value   c.  (where   c.   may be zero) 

to some asymptotic level    c     (where    c     may be one). 
CD V) 

The data from a learning or problem solving experiment are sequences 
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of responses given by the subjects.    In general, the probability of 

response on each trial   n   depends on the sequence of responses given 

on the preceding   n-1 trials.   One natural way to consider the expert- 

■ent, then, is as a sequence of probabilistic events in which the 

response on each trial n is an event to be explained, and the sequence 

of responses on trials 1, 2,  ..., n-1 is the event available to be used 

as the explanans. 

To illustrate the situation, consider the first four trials of an 

experi«ent.   The data are hypothetical, and were generated fro« a theory 

that will be presented later.    In the notation, a correct response is 

denoted   0   and an error is denoted   1.   On trial 1, the subject either 

gives a correct response or an error, and this provides the first state- 

space for the explanans.   The conditional probabilities   p..   .     are 

just the probabilities of correct response   on trial 2.    In the following 

equation, the ninbers in parentheses to the left of the first-trial 

states are the probabilities of those states, and the probabilities of 

response on trial 2 are in parentheses at the top. 

(.40)        (.60) 

0 1 

(.25)      0 

fPik.2l 
.40 .60 

d«) 
.40 .60 (.75)      1 

The infoxwation-theoretical quantities are 

H2(S) ■ 0.56,    H2(M)  • 0.67,    I2(S,M) - 0.00. 

The reason that no infonation is transaitted is that the response on 

trial 2 is independent of the response on trial 1 in this situation. 
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The responses on trial 3 are related to the sequences of response 

on trials 1 and 2. 

(.52) (.48) 

(.10) 00 

0 1 

.70 .30 

fpik.3l  " 
(.15) 

(.30) 

01 

10 

.40 

.70 

.60 

.30 

(.45) 11 .40 .60 

(19) 

Carrying out the information-theoretical calculations we obtain 

H3(S) - 1.24, H3(M) • 0.69, I3(S,M) - 0.04. 

The situation for trial 4 is as follows: 

[Pik,4l 

(.07) 

(.03) 

(.06) 

(.09) 

(.21) 

(.09) 

(.18) 

(.27) 

000 

001 

010 

011 

100 

101 

110 

HI 

(.62) 

0 

(.38) 

1 

.914 .086 

.400 .600 

.700 .300 

.400 .600 

.914 .086 

.400 .600 

.700 .300 

.400 .600 

(20) 

H4(S) - 1.88, H4(M) - 0.66,  I4(S,M) « 0.17. 

Clearly, this kind of calculation could be carried out indefinitely. 

It leads quickly to a relatively unmanageable system; on trial n the 

state-space that constitutes the explanans has 2 " members. On the 

other hand, the system eventually becomes unin formative. Assuming that 
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the system eventually reaches a stable asymptotic level of response 

probability, the responses will eventually become independent of pre- 

ceding sequences. In other words. 

lim I (S,M) > 0. 

This fact makes it reasonable to think about a theory of learning 

in relation to the sun of the values of I  across trials. Using this 

line of thinking, our state of knowledge about a learning system would 

be evaluated in regard to the extent to which the perfoxnance of a learn- 

ing subject could be predicted on the basis of his earlier performance, 

and this seems like a reasonable way to proceed. For example, it fits with 

our intuitions about discoveries that in fact count as additions to our 

knowledge. When responses are measured in more detail, as by a finer 

classification of errors or by measuring additional properties such as 

time to respond, the effect is to increase the values of I, for the 

same reason that additional variables added to the explanans and the 

explananda always increase information transmitted. In addition, when we 

analyze properties of the sequence of study trials or the information that 

is presented, thus going beyond the assunption of uniform trials that I 

have imposed on this analysis, we add new variables to the explanans 

and thus also increase the values of I . 
n 

These remarks about learning systems provide a framework for the 

methodological analysis of nonstationary systems that is consistent with 

the information-theoretical analysis worked out earlier for stationary 

systems. My remaining discussion will consider the role of theoretical 

entities in such systems. 

The general structure that I will use for my remaining remarks involves 
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a state-space of postulated variables.    On each trial there is a set of 

postulated states    [T ] related to the explanans    [S    .]    and the 

explananda    [M ]    by specified probability laws given as matrices of 

conditional probabilities    [q..    ] and    [r..     1.    Thus on each trial 
ij,n jK,n 

the same kind of structure that we used earlier for stationary systems can 

be applied to analyze the information-theoretical properties of a non- 

stationary system. 

In principle,  the theorcti:al states may be as complex as the 

theorist wishes.    However, a number of simplifying restrictions 

are frequently used.    The first is that the theoretical state-space 

[T ]    is a constant that I will denote    [T].    Secondly, the conditional 

probabilities of responses given theoretical states are constant, so that 

[r..     ]  is a constant    [r..].    Finally, and perhaps of greatest signifi- 
jK,n '  J" 

cance, the sequence of theoretical states that occurs over trials is 

assumed to be governed by a probability law that is specified by the 

theory. 

Before considering the nature of the probabilities connecting the 

theoretical states from trial to trial, it may be noted that the existence 
r,r any probability law governing the transitions between theoretical 

states,  along with probabilities relating theoretical states and observable 

responses,  are sufficient to specify empirical probabilities of the   kind 

presented in the illustration given above.    The sequence of states ib a 

stochastic process with trial outcomes   T.-.T.,,.,.»T      .  .   .    The pro- 

bability of any sequence of outcomes can be calculated tu^ng the transition 

probabilities    of the system.    Given a sequence of theoretical states, the 

probability of any response sequence can be calculated using the probabilities 

relating the theoretical states and the responses.    The conditional 
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probabilities p..  have the form 

"■\.JSi.u.O  ■ r^.J\.l\.2 V„„-l' 

*l*1 Vl'n 1  n'n 

P(M !■   | f • • • (M.        • j 
kj.l    kn-1,n-l 

Since the probabilities of all the sequences can be calculated, so can 

the conditional probabilities. 

The nature of the transition probabilities of the system has a funda- 

mental influence on the properties of the system. A desireable situation 

is one in which the theoretical states have the Markov property. When 

a theory is Markovian in its postulated states, the probability of any 

state T. on trial n depends only on the state of the system on trial 

n-1 and is independent of the sequence of states that occurred on trials 

1, ...,n-2. That is, 

P'Tj .nIV.l T)   1.n-l'"
,fVnlTj ,,n.l'- 

n   J "'n-l        "V  ■'n-l 

The Markov property represents a kind of independence of history. 

In a system lacking the Markov property, the future behavior of the system 

is dependent both on the present state of the system and on its past 

behavior. If a system has the Markov property its future behavior depends 

only on its present state. This has far-reaching implications for the 

analysis of the system. If its states are Markov, then any method that 

permits us to specify its present state permits us to predict its future 

behavior, up to the uncertainty imposed by the probability laws that govern 

the system. If the states of a theory are not Markov, then predictions 
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about future behavior can be improved by obtaining information about states 

that occurred in the past. If this is the case, then it follows that the 

description of a system provided by the theory omits important distinctions. 

Clearly, the future behavior of the system has to depend on its present 

state, however it arrived there. And the finding that a theory is not 

Markov in its postulated states is clear evidence that the states do not 

give a complete description of the system. 

Of course, we can assune that any description involving probabilistic 

relationships among states is incomplete. If a complete description were 

available, then the behavior of the system would be deterministic. Mow- 

ever, the discovery of a Markovian structure provides a basis for further 

investigation that simplifies the problem of refining the theoretical 

description. If the best available theory of a process has states with 

the Markov property, then further investigation can be focussed on 

distinguishing between relevant subsets of the class of events that are 

grouped together in the theoretical description.  Whatever one finds 

regarding the subsets of such events can be treated as a simple reclassi- 

fication of the events. If the states of a system as described by the 

theory are not Markov, then variables that are relevant tothe system's 

future behavior must be evaluated in relation to the sequence of states 

in the history of the system, and this will generally involve a considerable 

cost in theoretical complexity. 

I will illustrate these ideas about Markovian theories for non- 

stationary systems with a theory of simple memorizing. The kind of 

experiment to which the theory applies involves presentation of pairs of 

items that are unrelated. The pairs that a subject is asked to memorize 

might have short words as stimuli and numbers as responses. On each 
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experimental trial, the experimenter presents a word and asks the 

subject to give the number that he thinks Is correct. After the 

subject responds, the experimenter presents the correct answer. On the 

first trial, of course, the subject has to guess. However, after the 

subject has seen all of the pairs he can remember the correct 

answer on at least some of the tests, and eventually he is able to give 

the correct answer to all of the items. 

The data from an experiment like this are analyzed in the form 

of sequences of responses given to the Individual items. For example, 

on one Item a subject might give the sequence of responses 

0 1 0 1 1 0 0 0 ... 

meaning that he guessed correctly on the first trial, gave an error on 

trial 2, a correct response on trial 3, errors on trials 4 and 5, and 

then correct responses from then on. 

Hie simple model that I will describe was first developed by 

Bower [1].   According to the model, an individual item is learned in 

an all-or-none fashion.    That is, at the beginning of the experiment 

each item is unlearned.   On each study trial, there is some probability 

that the item becomes learned.    This probability is a constant—that is, 

the probability of learning an item does not increase over trials during 

the experiment.   Once an item is learned, the subject is assumed to remem- 

ber It for the remainder of the experimental trials.   Prior to learning 

an item, the subject has to guess the answer on each of the item's tests. 

Putting this more formally, the theory postulates two states in which 

we can find an item—U   and   L   for unlearned and learned.    Each item 

begins in state U, and on each trial there is a constant probability called 
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c   that the item goes from state   U   to state    L.    State L is absorbing-- 

that is, once an item goes into state L it stays there.    This set of 

assumptions can be expressed in standard notation as 

PCLJ.UJ) - (0,1)    , 

[tWnl ' 
n-1 

U n-1 

L 
n 

u„ 
1 0 

c 1-c 
(21) 

where the first equation states the assumption that all the items start 

in state U, and the second equation states the assumption of a constant 

probability of a transition from U to L and the assumption that L is 

an absorbing state. 

The final assumption links these ideas about the postulated states 

to probabilities of response. There are two possible responses on each 

trial—the subject can be correct or wrong. A correct response is 

denoted 0 and an error is denoted 1. While an item is in state U 

there is a probability, assumed to be constant, of a correct response 

by guessing. After the item goes into state L the probability of a 

correct response is assuned to be 1. This is stated in the following 

equation: 

'V 
L 

U 

0_ 

1 

g 

1 

0 

1-g 
(22) 

The major simplification resulting from the Markov assumption can 

be seen readily. As can be seen from equations (19) and (20), predictions 
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about the response on trial n based on previous responses should use the 

entire response sequence through trial n-1.    However, if the theory is 

correct then a prediction about the postulated state of the system on 

trial n based on previous theoretical states needs only to use the state 

of the system on trial n-1, and the sequence of states before trial 

n-1 can be ignored. 

The information-theoretical structure of the theory can be con- 

sidered in two general ways.    The first is closer to the earlier discus- 

sion given for stationary systems.    On each trial, the sequence of 

responses given for an item can be considered an empirical explanans, 

the response on that trial an explanandum, and the postulated theoretical 

states mediate between the two in the way considered earlier.    For the 

following calculations, I have taken the probability of learning,  c, at 

.20 and the prelearning guessing probability, g, at .25.    Then, for 

trial 2, we would have 

(.20)      (.80) 

(.25) 0 
[qii 2I " 

.75) 1 

L2 U2 

.20 .80 

.20 .80 
(23) 

for the relationship between trial-1 responses and theoretical states on 

»rial 2.   The relationship between theoretical states and responses on 

all trials is given by equation (22) with    g ■  .25.    Combining results 

given in equations (23) and (18), the information-theoretical quantities 

turn out to be 

H2(S)  « 0.56,    H2(T)  « 0.50,    H2(M)  - 0.67, 

(24) 
I2(S,T)  • 0.0,    I2(T,M) - 0.22,    I2(S,M)  - 0.0. 
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In general, the probabilities of theoretical states on trial 

n depend on the sequences of responses on all previous trials. On 

trial 3, 

(.36) (.64) 

(.10) 00 

L3 U3 

.60 .40 

(.15) 01 .20 .80 
[qiiJ' (.30) 10 .60 .40 

(.45) 11 .20 .80 

(25) 

H3(S)  « 1.24,    H3(T)  « 0.65,    H3(M)  ■ 0.69, 

I3(S,T)  « 0.08,    I3(T,M)  « 0.33,    I3(S,M)  ■ 0.04. 

A similar situation exists for trial 4, with the explanans consisting 

of the eight values given in equation (20).    The information-theoretical 

quantities are 

H4(S)  • 1.88,    H4(T) - 0.69,    H4(M) « 0.67, 

I4(S,T) ■ 0.19,    I4(T,M) « 0.38,    I4(S,M) - 0.11. 
(26) 

An overall impression of the informational structure of the theory 

■ay be obtained by examining the sums of information transmitted across 

trials. For the parameter values used above, the sums for trials 2-13 

are 

13 13 13 
I    I.(S,T) « 2.61,  Z    I.(T,M) - 3.47,  E I4(S,M) - 1.74. 

j«2 J j»2 J j-2 J 

Eventually, these sums converge but the values for c • .20 do not con- 

verge within the trials for which I carried out calculations. (Hie cal- 

culations were not carried further because an inordinate amount of time 
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is needed for computation of I. when j becomes large.) However, to 

provide some indication of the behavior of the statistics, I carried 

out calculations for higher values of c until the sums did approach 

asymptotic values. The results of these calculations are in Table 1. 

The main findings of interest in these calculations are the strong 

Table 1 

Information-Theoretical Statistics for 

All-or- -None Learning 

Z I  (S.T) 
j-1 J 

Z I  (T.M) 
j-1 J 

Z I   (S.M) 
j-1 J 

0.93 1.84 0.66 

0.64 1.09 0.29 

0.29 0.97 0.21 

0.19 0.58 0.09 

Parameters 

C-.40, g-.25 

C-.40, g-.50 

C-.60. g-.2S 

C-.60, g-.S0 

dependence of the vnount of information transmitted on the parameter 

values, and the further illustrations of the fact that the dependence 

between empirical variables is always less strong than the dependence 

between either set of empirical variables and the theoretical variables. 

The preceding calculations all have to do with the theoretical states 

considered as mediators between preceding response sequences and the 

response on trial n. Another view of the situation can be obtained by 

examining the sequence of theoretical states, without regard for the 

observable responses. This latter point of view is concerned with un- 

certainty and information transmitted at the level of the states that 

are postulated in the theory, and in some ways gives a more direct eval- 
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uation of our state of knowledge than the analysis that deals with 

responses, assuming the decision that the theory represents the best 

available understanding of the system in question. 

The analyses of theoretical sequences are similar to those given 

earlier in connection with equations (18)-(20), except that the Markovian 

structure of the theory permits us to ignore states of the system occur- 

ring in the past. For any trial n, the probability of any state depends 

only on the state on trial n-l; in fact, the probabilities of state-to- 

state transitions are constant. For trial 2, we have 

(0.0) L. 

Jl32   (1.0) Uj 

(.20) (.80) 

L2 U2 

1 0 

.20 .80 
(27) 

HjCT) ■ 0.0, H2(T) ■ 0.S0, H12(TKT) - 0.50, I2(T,T) ■ 0.0. 

For trial 3, the probabilities given at the top of equation   (27) are the 

probabilities of the explanans, and the transition probabilities remain 

unchanged.    The state probabilities on trial 3 are   P(L ) ■ .36,    F(U.) ■ 

.64.   The information-theoretical quantities are 

H3(T)  - 0.65,    H23(TxT)  - 1.08,    IjCT.T) • 0.07. 

On trial 4, the state probabilities are P(L4) - .49, P(U4) ■ .51, 

leading to 

H4(T) - 0.69, H34(T>cT) ■ 0.97, I4(T,T) » 0.37. 

Aside from the marked increase in simplicity, compared with the 
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observable sequences, the theoretical sequences also have more informa- 

tion transmitted.   For the trials given above, the calculations given 

earlier for   I(S,M)    are 0.0, 0.04, and 0.17.   The fact that values of 

information transmitted are higher in the theoretical sequences than in 

the observable sequences is not an accident.   Any matrix of probabilities 

in the observable responses like those given in equations (18)-(20) can 

be derived as the products of three matrices: 

Hie matrix designated by the central term is the transition matrix for 

the theoretical states, and we have already seen that the information 

transmitted by a product is no greater than the information transmitted 

by any of the matrices multiplied to form the product. 

Both the simplicity and information-theoretical advantages of 

the theoretical structure are illustrated further by the analysis of 

information transmitted sumsed over trials.   The analysis of this 

statistic for sequences of observable responses was discusteu earlier; 

each of the calculations presented there required nearly an hour of 

calculation on a medium-small computer (an IBM 1800 with 16,000 words of 

core storage and 4 microsecond memory access).   The calculations for the 

theoretical sequences can be done quite easily by hand.    In general. 

V™ •Hn.l(T) ♦Hn^ " Hn.l,n<T'T>' 

where 

Hn(T) - -P(Ln)logP(Ln) - P(ün)logP(Un) 

■ [l-(l-c)n'1]log[l-(l-c)n"1] - (l-c)n"1log(l-c)n"1 
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Vl.,.™ * -p(Wl0«P(Ln.l) - P<Un.l'Vl0«P<Un.l'V 

• -[l-(l-c)n"2llog[l-(l~c)n"2l - (l-c^'hogd-c)11"1 

- c(l-c)n'2logc(l-c)n"2 . 

Coabining tems and stming across values of   n, 

E I (T,T) - log c   - &£)- log (1-c)    -     I [l-(l-c)k]log(l-(l-c)k) 
j"2 J c k»l 

For values of c of .20, .40, and .60 the suns £1  for the theoretical n 

sequences are 5.67, 3.99, and 1.16. The last two values can be coapared 

with values given in Table 1 for the observable sequences. 

Since there is a siapler structure and greater infoxaation transaitted 

in the theoretical sequence than there is in the sequence of observations, 

the theory provides an advantageous basis for developing new knowledge. 

The developaent of new aeasureaent techniques for increasing dependencies 

between observations and the theoretical states, and the refineaent of 

theory to provide increased infomation transaitted in the trial-to-trial 

transitions both constitute additions to knowledge that are frequent in 

scientific investigation, and that are explicable within the framework 

of the present analysis. 

Conclusions 

In presenting the inforaation-theoretical analysis of theoretical 

entities of this paper, a niaber of rather routine calculations have been 

carried out. To soae extent, the significance of these analyses is just 

that they can be carried out. The analyses of this paper serve as an 
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existence proof that it is possible to perform analyses that are rele- 

vant to evaluating our state of knowledge when we have statistical 

knowledge about a system. It is universally recognized that theoretical 

entities can serve as an heuristic aid in development of new empirical 

knowledge about a system, and in some cases can provide a substantial 

simplification in the representation of knowledge. These facts are 

clarified and specified to some extent by the present analysis. We 

have seen that the infoxmation transmitted by dependencies between a set 

of empirical variables and a set of theoretical variables is generally 

greater than the infoxmation transmitted between sets of empirical 

variables, and this fact clarifies the usefulness of postulated entities 

in guiding empirical investigations. The role of theoretical entities 

in relation to simplicity is especially striking in nonstationary 

systems, particularly when the theoretical system has the Markov property. 
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